Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 845
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 124: 155272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181530

RESUMO

BACKGROUND: Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aß) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE: This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS: Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS: Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS: Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aß load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Curcumina , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Resveratrol/farmacologia , Curcumina/farmacologia , Quercetina/farmacologia , Apigenina/farmacologia , Genisteína/farmacologia , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Transdução de Sinais , Fatores de Crescimento Neural/metabolismo , Compostos Fitoquímicos/uso terapêutico , Fármacos Neuroprotetores/química
2.
Elife ; 122023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37956053

RESUMO

Retinoic acid-induced 1 (RAI1) haploinsufficiency causes Smith-Magenis syndrome (SMS), a genetic disorder with symptoms including hyperphagia, hyperlipidemia, severe obesity, and autism phenotypes. RAI1 is a transcriptional regulator with a pan-neural expression pattern and hundreds of downstream targets. The mechanisms linking neural Rai1 to body weight regulation remain unclear. Here we find that hypothalamic brain-derived neurotrophic factor (BDNF) and its downstream signalling are disrupted in SMS (Rai1+/-) mice. Selective Rai1 loss from all BDNF-producing cells or from BDNF-producing neurons in the paraventricular nucleus of the hypothalamus (PVH) induced obesity in mice. Electrophysiological recordings revealed that Rai1 ablation decreased the intrinsic excitability of PVHBDNF neurons. Chronic treatment of SMS mice with LM22A-4 engages neurotrophin downstream signalling and delayed obesity onset. This treatment also partially rescued disrupted lipid profiles, insulin intolerance, and stereotypical repetitive behaviour in SMS mice. These data argue that RAI1 regulates body weight and metabolic function through hypothalamic BDNF-producing neurons and that targeting neurotrophin downstream signalling might improve associated SMS phenotypes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Síndrome de Smith-Magenis , Transativadores , Fatores de Transcrição , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Homeostase , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/genética , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Crescimento Neural/metabolismo , Peso Corporal
3.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4201-4207, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802788

RESUMO

This study aims to explore the neuroprotective effect of bilobalide(BB) and the mechanisms such as inhibiting inflammatory response in macrophage/microglia, promoting neurotrophic factor secretion, and interfering with the activation and differentiation of peripheral CD4~+ T cells. BB of different concentration(12.5, 25, 50, 100 µg·mL~(-1)) was used to treat the RAW264.7 and BV2 cells for 24 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay and cell counting kit-8(CCK-8) were employed to detect the cytotoxicity of BB and appropriate concentration was selected for further experiment. Lipopolysaccharide(LPS) was applied to elicit inflammation in RAW264.7 and BV2 cells, mouse bone marrow-derived macrophages(BMDMs), and primary microglia, respectively. The effect of BB on cell proliferation and secretion of inflammatory cytokines and neurotrophic factors was detected by enzyme-linked immunosorbent assay(ELISA). Spleen monocytes of C57BL/6 female mice(7-8 weeks old) were isolated, and CD4~+ T cells were separated by magnetic beads under sterile conditions. Th17 cells were induced by CD3/CD28 and the conditioned medium for eliciting the inflammation in BMDMs. The content of IL-17 cytokines in the supernatant was detected by ELISA to determine the effect on the activation and differentiation of CD4~+ T cells. In addition, PC12 cells were incubated with the conditioned medium for eliciting inflammation in BMDMs and primary microglia and the count and morphology of cells were observed. The cytoto-xicity was determined by lactate dehydrogenase(LDH) assay. The result showed that BB with the concentration of 12.5-100 µg·mL~(-1) had no toxicity to RAW264.7 and BV2 cells, and had no significant effect on the activity of cell model with low inflammation. The 50 µg·mL~(-1) BB was selected for further experiment, and the results indicated that BB inhibited LPS-induced secretion of inflammatory cytokines. The experiment on CD4~+ T cells showed that the conditioned medium for LPS-induced inflammation in BMDMs promoted the activation and differentiation of CD4~+ T cells, while the conditioned medium of the experimental group with BB intervention reduced the activation and differentiation of CD4~+ T cells. In addition, BB also enhanced the release of neurotrophic factors from BMDMs and primary microglia. The conditioned medium after BB intervention can significantly reduce the death of PC12 neurons, inhibit neuronal damage, and protect neurons. To sum up, BB plays a neuroprotective role by inhibiting macrophage and microglia-mediated inflammatory response and promoting neurotrophic factors.


Assuntos
Bilobalídeos , Feminino , Ratos , Camundongos , Animais , Bilobalídeos/farmacologia , Neuroproteção , Lipopolissacarídeos/toxicidade , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Microglia , Citocinas/metabolismo , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Inflamação/metabolismo
4.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513286

RESUMO

The increase in people's longevity has, consequently, led to more brain involvement and neurodegenerative diseases, which can become complicated and lead to chronic degenerative diseases, thereby presenting greater public health problems. Medicinal plants have been used since ancient times and contain high concentrations of molecules, including polyphenols. It has been proven that polyphenols, which are present in various natural sources can provide curative effects against various diseases and brain disorders through neuroprotective effects. These neuroprotective effects are mainly attributed to their ability to cross the blood-brain barrier, eliminate reactive oxygen species, and cause the chelation of metal ions. Polyphenols increase the concentration of neurotrophic factors and bind directly to the membrane receptors of these neurotrophic factors, to modulate and activate the signaling cascades that allow the plasticity, survival, proliferation, and growth of neuronal cells, thereby allowing for better learning, memory, and cognition. Moreover, polyphenols have no serious adverse side effects resulting from their consumption.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Doenças Neurodegenerativas/metabolismo , Neuroproteção , Flavonoides , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Antioxidantes/metabolismo , Fatores de Crescimento Neural
5.
Nutr Res ; 116: 80-88, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421933

RESUMO

Zinc (Zn) deficiency has many adverse effects, including growth retardation, loss of appetite, vascular diseases, cognitive and memory impairment, and neurodegenerative diseases. In the current study, we investigated the hypothesis that dietary Zn inadequacy affects neurotrophic factors and proteostasis in the brain. Three-week-old Wistar/Kyoto male rats were fed either a Zn-deficient diet (D; < 1 mg Zn/kg diet; n = 18) or pair-fed with the control diet (C; 48 mg Zn/kg diet; n = 9) for 4 weeks. Subsequently, the rats in the D group were subdivided into two groups (n = 9), in which one group continued to receive a Zn-deficient diet, whereas the other received a Zn-supplemented diet (R; 48 mg Zn/kg diet) for 3 more weeks, after which the rats were sacrificed to collect their brain tissue. Markers of endoplasmic reticulum stress, ubiquitin-proteasome system, autophagy, and apoptosis, along with neurotrophic factors, were investigated by immunoblotting. Proteasomal activity was analyzed by the spectrofluorometric method. The results showed an altered ubiquitin-proteasome system and autophagy components and increased gliosis, endoplasmic reticulum stress, and apoptosis markers in Zn-deficient rats compared with the control group. Zinc repletion for 3 weeks could partially restore these alterations, indicating a necessity for an extended duration of Zn supplementation. In conclusion, a decline in Zn concentrations below a critical threshold may trigger multiple pathways, leading to brain-cell apoptosis.


Assuntos
Fatores de Crescimento Neural , Complexo de Endopeptidases do Proteassoma , Proteostase , Zinco , Animais , Masculino , Ratos , Dieta , Fatores de Crescimento Neural/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos Wistar , Ubiquitinas/metabolismo , Zinco/deficiência
6.
Nutrients ; 15(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299526

RESUMO

The Zingiberaceae family possess various phenolic compounds that have significant systemic bioactivities in the brain, including in age-related neurodegenerative diseases. Neurotrophins are growth factors that protect neurons from oxidative stress, and dysregulation of the neurotrophic system may result in neurocognitive disease. Phenolic compounds from the Zingiberaceae family have been used in traditional and complementary medicine (TCM) to improve cognitive functions. These compounds may affect the expression of neurotrophic agents, but their underlying molecular mechanisms require further investigation. Therefore, the goal of this review is to determine the expression and functional roles of phenolic compounds from the Zingiberaceae family in brain disorders and age-related neurodegenerative disorders. While previous studies have proposed various mechanisms for the neuroprotective activity of these compounds, their precise mechanism of action remains complex and poorly understood. Despite some promising findings, there are still shortcomings in the therapeutic use of these herbs, and current interventions involving the Zingiberaceae family appear to be clinically insufficient. This article aims to summarize recent discoveries of phenolic compounds from several Zingiberaceae family members and their use as neuroprotectants and provide the first review of evidence-linked neuroprotective activity of bioactive ingredients from prominent members of the Zingiberaceae family.


Assuntos
Encefalopatias , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Zingiberaceae , Humanos , Fatores de Crescimento Neural/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Encefalopatias/tratamento farmacológico , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico
7.
Sci Rep ; 13(1): 7354, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147372

RESUMO

Endophytic fungi have been demonstrated to produce bioactive secondary metabolites, some of which promote plant growth. Three endophytic fungi isolated from healthy plants living in dehesas of Extremadura (Spain) were identified and evaluated for their ability to produce phytohormone-like substances, antioxidant activity, total polyphenol content, phosphate solubilization ability and siderophore and ammonia production. The filtrates and extracts produced by the three endophytes were applied to Lolium multiflorum seeds and seedlings under both in vitro and greenhouse conditions, to analyse their influence on plant growth traits such as germination, vigour index, chlorophyll data, number and length of leaves and roots, and dry weight. All three endophytes, which were identified as Fusarium avenaceum, Sarocladium terricola and Xylariaceae sp., increased the germination of L. multiflorum seeds by more than 70%. Shoot and root length, plant dry weight and the number of roots were positively affected by the application of fungal filtrates and/or extracts, compared with controls. The tentative HPLC-MS identification of phytohormone-like substances, such as gibberellin A2 and zeatin, or the antioxidant acetyl eugenol, may partially explain the mechanisms of L. multiflorum plant growth promotion after the application of fungal filtrates and/or extracts.


Assuntos
Lolium , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Endófitos/metabolismo , Lolium/metabolismo , Raízes de Plantas/metabolismo , Fatores de Crescimento Neural/metabolismo , Extratos Vegetais/metabolismo
8.
Food Res Int ; 168: 112765, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120215

RESUMO

Peanut shell is an agricultural byproduct being wasted on a large scale, which is in urgent need to be recycled. To fully utilize its pharmacological ingredients, e.g. luteolin, eriodyctiol, and 5,7-dihydroxychromone, we evaluated the curative effect of ethanol extract deriving from peanut shell (PSE) in treating chronic unpredictable mild stress (CUMS)-induced depressive mice. The chronic stress lasted for 10 weeks, and PSE at 100-900 mg/kg/day was gavaged to mice in the last 2 weeks of modeling. The depressive behaviors were assessed by analyses of sucrose preference, tail suspension, and forced swimming. The brain injury was demonstrated by Hematoxylin and Eosin (H&E), Nissl body, and TdT-mediated dUTP nick end labeling (TUNEL) stainings in the mouse hippocampus. Biochemical indicators were analyzed, including levels of neurotrophic factors, neurotransmitters, stress hormones, and inflammatory mediators. The feces were collected for the 16S rDNA sequencing of gut microbiome. Administration of PSE improved the sucrose water consumption of depressive mice, while it decreased the immobile time in tail suspension and forced swimming tests. Meanwhile, the anti-depressive effect of PSE was supported by ameliorated histochemical staining, increased levels of neurotrophic factors and neurotransmitters, as well as down-regulated stress hormones. Furthermore, the treatment of PSE was able to mitigate the levels of inflammatory cytokines in brain, serum, and small intestine. Besides, the tight junction proteins, e.g., occludin and ZO-1, of gut showed elevated expressions, which coincided with the elevated abundance and diversity of gut microbiota upon PSE treatment. This study validated the therapeutic efficacy of PSE in fighting against depression, as well as its modulatory action on inflammation and gut microbiota, which promoted the recycling of this agricultural waste to be health supplements of added value.


Assuntos
Depressão , Microbioma Gastrointestinal , Camundongos , Animais , Depressão/tratamento farmacológico , Arachis , Inflamação , Extratos Vegetais/farmacologia , Fatores de Crescimento Neural/farmacologia , Hormônios/farmacologia , Etanol , Sacarose/farmacologia
9.
Curr Comput Aided Drug Des ; 19(1): 24-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36221888

RESUMO

AIM: With several experimental studies establishing the role of Bacopa monnieri as an effective neurological medication, less focus has been employed to explore how effectively Bacopa monnieri brings about this property. The current work focuses on understanding the molecular interaction of the phytochemicals of the plant against different neurotrophic factors to explore their role and potential as potent anti-neurodegenerative drugs. BACKGROUND: Neurotrophins play a crucial role in the development and regulation of neurons. Alterations in the functioning of these Neurotrophins lead to several Neurodegenerative Disorders. Albeit engineered medications are accessible for the treatment of Neurodegenerative Disorders, due to their numerous side effects, it becomes imperative to formulate and synthesize novel drug candidates. OBJECTIVE: This study aims to investigate the potential of Bacopa monnieri phytochemicals as potent antineurodegenerative drugs by inspecting the interactions between Neurotrophins and target proteins. METHODS: The current study employs molecular docking and molecular dynamic simulation studies to examine the molecular interactions of phytochemicals with respective Neurotrophins. Further inspection of the screened phytochemicals was performed to analyze the ADME-Tox properties in order to classify the screened phytochemicals as potent drug candidates. RESULTS: The phytochemicals of Bacopa monnieri were subjected to in-silico docking with the respective Neurotrophins. Vitamin E, Benzene propanoic acid, 3,5-bis (1,1- dimethylethyl)- 4hydroxy-, methyl ester (BPA), Stigmasterol, and Nonacosane showed an excellent binding affinity with their respective Neurotrophins (BDNF, NT3, NT4, NGF). Moreover, the molecular dynamic simulation studies revealed that BPA and Stigmasterol show a very stable interaction with NT3 and NT4, respectively, suggesting their potential role as a drug candidate. Nonacosane exhibited a fluctuating binding behavior with NGF which can be accounted for by its long linear structure. ADME-Tox studies further confirmed the potency of these phytochemicals as BPA violated no factors and Vitamin E, Stigmasterol and Nonacosane violated 1 factor for Lipinski's rule. Moreover, their high human intestinal absorption and bioavailability score along with their classification as non-mutagen in the Ames test makes these compounds more reliable as potent antineurodegenerative drugs. CONCLUSION: Our study provides an in-silico approach toward understanding the anti-neurodegenerative property of Bacopa monnieri phytochemicals and establishes the role of four major phytochemicals which can be utilized as a replacement for synthetic drugs against several neurodegenerative disorders.


Assuntos
Bacopa , Doenças Neurodegenerativas , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bacopa/química , Bacopa/metabolismo , Simulação de Acoplamento Molecular , Estigmasterol/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Fatores de Crescimento Neural/metabolismo , Vitamina E , Desenvolvimento de Medicamentos
10.
Zhongguo Zhen Jiu ; 42(12): 1395-402, 2022 Dec 12.
Artigo em Chinês | MEDLINE | ID: mdl-36484193

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) at "Tianshu" (ST 25) and "Shangjuxu" (ST 37) on mental state, visceral sensitivity and protein expression of nerve growth factor (NGF), tyrosine kinase receptor A (TrkA) and transient receptor potential vanilloid 1 (TRPV1) of colonic tissue in diarrhea-predominant irritable bowel syndrome (IBS-D) rats, and to explore its possible mechanism on treating IBS-D. METHODS: A total of 36 male SD rats of SPF grade were randomized into a blank group, a model group, an EA group and a western medication group, 9 rats in each group. In the model group, the EA group and the western medication group, IBS-D model was established by enema of dinitrobenzene sulfonic acid (DNBS) combined with chronic restraint stress method. In the EA group, EA was applied at "Tianshu" (ST 25) and "Shangjuxu" (ST 37), with disperse-dense wave, in frequency of 2 Hz/100 Hz, 20 min each time, once a day for 7 days. In the western medication group, pinaverium bromide suspension was given by gavage (15 mg•kg-1•d-1) for 7 days. Before and after model establishment, and after intervention, the body mass, 24 h food intake and fecal water content were observed, the visceral sensitivity was detected by abdominal withdrawal reflex (AWR); after intervention, the mental state was evaluated by elevated plus maze (EPM) test, the protein expression of NGF, TrkA and TRPV1 was detected by immunohistochemistry and Western blot in the 4 groups. RESULTS: After model establishment, compared with the blank group, the body mass and 24 h food intake were decreased (P<0.05), first systolic latency of AWR was shortened and number of contraction wave of AWR was increased (P<0.05), and fecal water content was increased (P<0.05) in the model group, the EA group and the western medication group. After intervention, compared with the blank group, open arm residence time ratio (OT%) of EPM was decreased (P<0.05) and protein expression of NGF, TrkA, TRPV1 in colonic tissue was increased in the model group (P<0.05); compared with the model group, the body mass and 24 h food intake were increased (P<0.05), first systolic latency of AWR was lengthened and number of contraction wave of AWR was decreased (P<0.05), the fecal water content was decreased (P<0.05), OT% of EPM was increased (P<0.05), and protein expression of NGF, TrkA, TRPV1 in colonic tissue was decreased (P<0.05) in the EA group and the western medication group. CONCLUSION: Electroacupuncture at "Tianshu" (ST 25) and "Shangjuxu" (ST 37) can relieve the anxiety and depression-like behaviors in IBS-D rats, down-regulate the protein expression of NGF, TrkA, TRPV1 in colonic tissue, so as to reduce the visceral sensitivity and relieve symptoms.


Assuntos
Síndrome do Intestino Irritável , Receptores Proteína Tirosina Quinases , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/terapia , Ácidos Sulfônicos , Fatores de Crescimento Neural , Canais de Cátion TRPV/genética
11.
J Agric Food Chem ; 70(42): 13602-13614, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36239029

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease, characterized by memory loss and cognitive deficits accompanied by neuronal damage and cholinergic disorders. Sesamol, a lignan component in sesame oil, has been proven to have neuroprotective effects. This research aimed to investigate the preventive effects of sesamol on scopolamine (SCOP)-induced cholinergic disorders in C57BL/6 mice. The mice were pretreated with sesamol (100 mg/kg/d, p.o.) for 30 days. Behavioral tests indicated that sesamol supplement prevented SCOP-induced cognitive deficits. Sesamol enhanced the expression of neurotrophic factors and postsynaptic density (PSD) in SCOP-treated mice, reversing neuronal damage and synaptic dysfunction. Importantly, sesamol could balance the cholinergic system by suppressing the AChE activity and increasing the ChAT activity and M1 mAChR expression. Sesamol treatment also inhibited the expression of inflammatory factors and overactivation of microglia in SCOP-treated mice. Meanwhile, sesamol improved the antioxidant enzyme activity and suppressed oxidative stress in SCOP-treated mice and ameliorated the oxidized cellular status and mitochondrial dysfunction in SCOP-treated SH-SY5Y cells. In conclusion, these results indicated that sesamol attenuated SCOP-induced cognitive dysfunction via balancing the cholinergic system and reducing neuroinflammation and oxidative stress.


Assuntos
Disfunção Cognitiva , Lignanas , Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Humanos , Camundongos , Antioxidantes/metabolismo , Colinérgicos , Cognição , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Lignanas/farmacologia , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/uso terapêutico , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Escopolamina , Óleo de Gergelim
12.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142276

RESUMO

Reproductive aging is characterized by a decline in ovarian function and in oocytes' quantity and quality. Pigment epithelium-derived factor (PEDF), a pivotal player in ovarian angiogenic and oxidative balance, was evaluated for its involvement in reproductive aging. Our work examines the initial stage of reproductive aging in women and mice, and the involvement of PEDF in the process. Granulosa cells from reproductively-aged (RA) women and mice (36-44 years old and 9-10 months old, respectively) indicated an increase in the level of PEDF mRNA (qPCR), with yet unchanged levels of AMH and FSHR mRNAs. However, the PEDF protein level in individual women showed an intra-cellular decrease (ELISA), along with a decrease in the corresponding follicular fluid, which reflects the secreted fraction of the protein. The in vitro maturation (IVM) rate in the oocytes of RA mice was lower compared with the oocytes of young mice, demonstrated by a reduced polar body extrusion (PBE) rate. The supplementation of PEDF improved the hampered PBE rate, manifested by a higher number of energetically-competent oocytes (ATP concentration and mtDNA copy number of individual oocytes). Our findings propose PEDF as an early marker of reproductive aging, and a possible therapeutic in vitro agent that could enhance the number of good-quality oocytes in older IVF patients.


Assuntos
Oócitos , Ovário , Serpinas/metabolismo , Trifosfato de Adenosina/metabolismo , Envelhecimento/genética , Animais , DNA Mitocondrial/metabolismo , Proteínas do Olho , Feminino , Humanos , Camundongos , Fatores de Crescimento Neural , Oócitos/metabolismo , Ovário/metabolismo , RNA Mensageiro/metabolismo
13.
Zhen Ci Yan Jiu ; 47(9): 843-6, 2022 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-36153461

RESUMO

The corticospinal tract (CST), descending from the frontoparietal cortex and traveling down to terminate at the anterior horn of the spinal cord to mediate voluntary movements, is frequently injured from the infarcted or hemorrhagic cerebrovascular insults due to stroke. Under the circumstances, motor dysfunction seriously affects the patient's quality of life. Acupuncture therapy has a sequelae, especially in improving motor deficits. In the present paper, we reviewed the current development of researches on acupuncture treatment of poststroke motor dysfunction and its biological mechanisms from 1) delaying patients' development of neuronal degeneration and white matter fibrosis (Wallerian degeneration), 2) improving patients' upper limb motor function and daily life ability by promoting the repair of white matter tracts and CST on the affected side, 3) promoting the compensation of CST on the healthy side, 4) reconstructing the motor conduction pathway to strengthen the bilateral brain connection in ex-perimental animals, and 5) strengthening the sprouting of the contralateral CST to dominate the affected side again across the midline. In addition, acupuncture stimulation induced improvement of axonal rewiring for corticospinal innervation is also possibly related to its functions in accelerating the synthesis and release of neurotrophic factors, down-regulating Nogo-A/RhoA signaling and activating vascular epithelial growth factor/Dll4/Notch signaling pathways.


Assuntos
Terapia por Acupuntura , Córtex Motor , Acidente Vascular Cerebral , Animais , Córtex Motor/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas Nogo/metabolismo , Tratos Piramidais/metabolismo , Qualidade de Vida , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia
14.
Comput Biol Med ; 149: 106001, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055159

RESUMO

Insomnia is a very common disease worldwide. It seriously affects the quality of human life and even endangers health. Traditional Chinese medicine (TCM) has unique advantages in the intervention and treatment of insomnia. However, its underlying mechanism has yet to be elucidated. This study was performed to explore the potential biomarkers and mechanisms of insomnia, and treatment TCM and classical prescriptions. The gene microarray data of insomnia is downloaded and preprocessed. Differentially expressed genes (DEGs) and GO and KEGG enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed. Small molecule drugs for curing insomnia were identified using cMap and CTD databases. We searched the TCM corresponding to small molecule drugs and the classic prescriptions corresponding to TCM by the TCMSP database. We constructed a network of "ingredient-TCM-classic prescriptions". The molecular docking was performed to validate the screening results. We obtained a total of 124 DEGs, including 78 up-regulated genes, 46 down-regulated genes, 10 Hub genes and 3 key modules. A total of 125 significant GO entries and 15 significant KEGG were enriched (P < 0.05). The main biological processes involve neuronal apoptosis, autophagy, cell growth and apoptosis, etc. These signaling pathways may be involved in molecular regulatory mechanisms of insomnia, such as autophagy regulation, Alzheimer's disease, pathways to neurodegenerative diseases and neurotrophic factor signaling pathways. We identified 10 traditional Chinese medicines and 2 classical prescriptions of potential value. In addition, the molecular docking results indicated that small molecule ligands were nicely bound to the Hub gene, and the binding affinity ranged from -7.6 to -9.7 kcal/mol. This study provides a foundation for the clinical treatment of insomnia, explains the molecular mechanisms, and efficiently develops TCM and classical prescriptions.


Assuntos
Biologia Computacional , Distúrbios do Início e da Manutenção do Sono , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Ligantes , Simulação de Acoplamento Molecular , Fatores de Crescimento Neural , Prescrições , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/genética
15.
J Neurosci ; 42(42): 7885-7899, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36028316

RESUMO

Anterolateral system (AS) neurons transmit pain signals from the spinal cord to the brain. Their morphology, anatomy, and physiological properties have been extensively characterized and suggest that specific AS neurons and their brain targets are concerned with the discriminatory aspects of noxious stimuli, such as their location or intensity, and their motivational/emotive dimension. Among the recently unraveled molecular markers of AS neurons is the developmentally expressed transcription factor Phox2a, providing us with the opportunity to selectively disrupt the embryonic wiring of AS neurons to gain insights into the logic of their adult function. As mice with a spinal-cord-specific loss of the netrin-1 receptor deleted in colorectal carcinoma (DCC) have increased AS neuron innervation of ipsilateral brain targets and defective noxious stimulus localization or topognosis, we generated mice of either sex carrying a deletion of Dcc in Phox2a neurons. Such DccPhox2a mice displayed impaired topognosis along the rostrocaudal axis but with little effect on left-right discrimination and normal aversive responses. Anatomical tracing experiments in DccPhox2a mice revealed defective targeting of cervical and lumbar AS axons within the thalamus. Furthermore, genetic labeling of AS axons revealed their expression of DCC on their arrival in the brain, at a time when many of their target neurons are being born and express Ntn1 Our experiments suggest a postcommissural crossing function for netrin-1:DCC signaling during the formation of somatotopically ordered maps and are consistent with a discriminatory function of some of the Phox2a AS neurons.SIGNIFICANCE STATEMENT How nociceptive (pain) signals are relayed from the body to the brain remains an important question relevant to our understanding of the basic physiology of pain perception. Previous studies have demonstrated that the AS is a main effector of this function. It is composed of AS neurons located in the spinal cord that receive signals from nociceptive sensory neurons that detect noxious stimuli. In this study, we generate a genetic miswiring of mouse AS neurons that results in a decreased ability to perceive the location of a painful stimulus. The precise nature of this defect sheds light on the function of different kinds of AS neurons and how pain information may be organized.


Assuntos
Neoplasias Colorretais , Fatores de Crescimento Neural , Animais , Camundongos , Neoplasias Colorretais/metabolismo , Receptor DCC/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptores de Netrina/metabolismo , Netrina-1 , Neurônios/fisiologia , Dor/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Tálamo
16.
Tissue Eng Regen Med ; 19(5): 1063-1075, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35857260

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are considered a potential tool for regenerating damaged tissues due to their great multipotency into various cell types. Here, we attempted to find the appropriate conditions for neuronal differentiation of tonsil-derived MSCs (TMSCs) and expand the potential application of TMSCs for treating neurological diseases. METHODS: The TMSCs were differentiated in DMEM/F-12 (Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12) supplemented with various neurotrophic factors for 7-28 days to determine the optimal neuronal differentiation condition for the TMSCs. The morphologies as well as the levels of the neural markers and neurotransmitters were assessed to determine neuronal differentiation potentials and the neuronal lineages of the differentiated TMSCs. RESULTS: Our initial study demonstrated that DMEM/F12 supplemented with 50 ng/mL basic fibroblast growth factor with 10 µM forskolin was the optimal condition for neuronal differentiation for the TMSCs. TMSCs had higher protein expression of neuronal markers, including neuron-specific enolase (NSE), GAP43, postsynaptic density protein 95 (PSD95), and synaptosomal-associated protein of 25 kDa (SNAP25) compared to the undifferentiated TMSCs. Immunofluorescence staining also validated the increased mature neuron markers, NeuN and synaptophysin, in the differentiated TMSCs. The expression of glial fibrillar acidic protein and ionized calcium-binding adaptor molecule 1 the markers of astrocytes and microglia, were also slightly increased. Additionally, the differentiated TMSCs released a significantly higher level of acetylcholine, the cholinergic neurotransmitter, as analyzed by the liquid chromatography-tandem mass spectrometry and showed an enhanced choline acetyltransferase immunoreactivity compared to the undifferentiated cells. CONCLUSION: Our study suggests that the optimized condition favors the TMSCs to differentiate into cholinergic neuron-like phenotype, which could be used as a possible therapeutic tool in treating certain neurological disorders such as Alzheimer's disease.


Assuntos
Células-Tronco Mesenquimais , Tonsila Palatina , Acetilcolina/metabolismo , Cálcio/metabolismo , Colina O-Acetiltransferase/metabolismo , Colinérgicos/metabolismo , Colforsina/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fatores de Crescimento Neural/metabolismo , Fosfopiruvato Hidratase/metabolismo , Sinaptofisina/metabolismo
18.
Biomed Res Int ; 2022: 8557936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502338

RESUMO

Objective: A case-control study was conducted to explore the effect of acupuncture combined with rehabilitation training on limb function and nerve injury rehabilitation in elderly patients with stroke. Methods: A total of 72 elderly patients with stroke treated from March 2019 to June 2021 in our hospital were enrolled as the object of study. The clinical data were collected and divided into two groups according to their different treatment methods. The patients cured with routine treatment combined with rehabilitation training were taken as the control group and the patients cured with acupuncture combined with rehabilitation training as the study group. The clinical efficacy was recorded, and the cognition and activities of daily living were evaluated by Terrell Cognitive Assessment scale, limb motor function score, and activities of daily living scale. The National Institutes of Health Stroke Scale (NIHSS) and Glasgow Coma Scale (GCS) were employed to compare the neurological function before and after treatment. Glasgow Outcome Scale (GOS) and Disability Rating Scale (DRS) were adopted to evaluate the functional prognosis. The simplified Fugl-Meyer assessment of motor recovery score was employed to evaluate the limb function of the patients. The Wolf Motor Function Test (WMFT) score was adopted to evaluate the functional rehabilitation effect of the patients. Enzyme-linked immunosorbent assay (ELISA) was adopted to determine the serum neurological function indexes such as nerve growth factor, Smur100B protein, and glial fibrillary acidic protein. The cerebral blood flow (CBF), peak time, average transit time, and cerebral blood volume were measured by CT perfusion imaging, and the incidence of side effects during treatment was recorded. Results: Regarding the recovery of cognitive function and daily function after treatment, after treatment, the MoCA and ADL scores were increased, and the comparison indicated that the MoCA and ADL scores of the study group were remarkably higher compared to the control group (P < 0.05). With regard to the FMA-UE scores after treatment, the Fugl-Meyer scores were gradually increased, and the Fugl-Meyer scores in the study group were remarkably higher compared to the control group (P < 0.05) in the next two months. After 2 weeks, 4 weeks, 6 weeks, and 6 weeks of treatment, the WMFT scores gradually increased, and the WMFT score of the study group was remarkably higher compared to the control group. After treatment, the levels of nerve growth factor and S-100B protein were decreased, and the level of glial fibrillary acidic protein was increased. Comparison between the two groups, it indicated the improvement degree of each neurological function index in the study group was remarkably better (P < 0.05). With regard to cerebral hemodynamic indexes after treatment, 1 week after treatment, the CBF and average transit time of the observation group were remarkably higher compared to the control group, and the levels of cerebral blood volume and peak time were remarkably lower compared to the control group (P < 0.05). After 4 weeks of treatment, the cerebral hemodynamic indexes of the observation group did not change remarkably, and they were all lower than 1 week after the treatment. In the terms of side effects, 1 case of limb dysfunction, 1 case of swallowing dysfunction, 1 case of electrolyte disturbance, and none of infection in the study group, the incidence of adverse reactions was 8.33%. In the control group, there were 3 cases of limb dysfunction, 2 cases of swallowing dysfunction, 2 cases of electrolyte disturbance, and 3 cases of infection, and the incidence of adverse reactions was 27.78%. Compared between groups, the incidence of adverse reactions in the study group was lower (P < 0.05). Conclusion: Early use of acupuncture combined with rehabilitation training has a remarkable therapeutic effect on elderly stroke patients. It can remarkably promote the recovery of the patient's condition, remarkably enhance their neurological function, cognitive function, motor function, and daily life function, and effectively strengthen the patient's prognosis score. It has important clinical application value to reduce the incidence of adverse reactions.


Assuntos
Terapia por Acupuntura , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Atividades Cotidianas , Idoso , Estudos de Casos e Controles , Terapia Combinada , Eletrólitos , Proteína Glial Fibrilar Ácida , Humanos , Fatores de Crescimento Neural , Recuperação de Função Fisiológica , Estudos Retrospectivos , Subunidade beta da Proteína Ligante de Cálcio S100 , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos
19.
Phytomedicine ; 102: 154193, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35636177

RESUMO

BACKGROUND: Parkinson's disease (PD) is an age-related neurodegenerative disorder without effective treatments. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been suggested to be capable of protecting against PD by inhibiting endoplasmic reticulum (ER) stress-mediated neuronal apoptosis. PURPOSE: This study was aimed to evaluate the antiparkinsonian effect of dendrobine and reveal its underlying mechanisms from the perspective of MANF-mediated ER stress suppression. METHODS: Behavioral assessments of PD mice as well as LDH/CCK-8 assay in SH-SY5Y cells and primary midbrain neurons were carried out to detect the antiparkinsonian effect of dendrobine. Immunofluorescence, western blot, flow cytometry and shRNA-mediated MANF knockdown were used to determine the apoptosis of dopaminergic neurons and the expressions of ER stress-related proteins for investigating the underlying mechanism of dendrobine. RESULTS: Dendrobine significantly ameliorated the motor performance of PD mice and attenuated the injuries of dopaminergic neurons. Dendrobine could also relieve neuronal apoptosis, up-regulate MANF expression and inhibit ER stress, which were largely abolished by shRNA-mediated MANF knockdown in PD model. CONCLUSION: Dendrobine might protect against PD by inhibiting dopaminergic neuron apoptosis, which was achieved by facilitating MANF-mediated ER stress suppression. Our study suggested that dendrobine could act as a MANF up-regulator to protect against PD, and provided a potential candidate for exploring etiological agents of PD.


Assuntos
Alcaloides , Neurônios Dopaminérgicos , Estresse do Retículo Endoplasmático , Doença de Parkinson , Alcaloides/farmacologia , Animais , Antiparkinsonianos/farmacologia , Apoptose/efeitos dos fármacos , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Camundongos , Fatores de Crescimento Neural/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , RNA Interferente Pequeno/farmacologia
20.
Stem Cell Rev Rep ; 18(8): 2662-2682, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35587330

RESUMO

Stem cell therapy holds great promise for the treatment of spinal cord injury (SCI), which can reverse neurodegeneration and promote tissue regeneration via its pluripotency and ability to secrete neurotrophic factors. Although various stem cell-based approaches have shown certain therapeutic effects when applied to the treatment of SCI, their clinical efficacies have been disappointing. Thus, it is an urgent need to further enhance the neurological benefits of stem cells through bioengineering strategies including genetic engineering. In this review, we summarize the progress of stem cell therapy for SCI and the prospect of genetically modified stem cells, focusing on the genome editing tools and functional molecules involved in SCI repair, trying to provide a deeper understanding of genetically modified stem cell therapy and more applicable clinical strategies for SCI repair.


Assuntos
Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco , Fatores de Crescimento Neural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA